38 research outputs found

    Financially Stimulating Local Economies by Exploiting Communities’ Microgrids: Power Trading and Hybrid Techno-Economic (HTE) Model

    Get PDF
    This paper thoroughly considers the potential of installing microgrids (MGs) in communities that suffer from the economic crisis in order to financially stimulate their local economies. Exploiting the state-of-the-art evolutions in the fields of the MG technology, the Hybrid Techno-Economic (HTE) model is proposed as a suitable techno-economic tool for assessing the power generation/consumption behaviour and the financial performance of these communities’ MGs.The contribution of this paper is four-fold. First, the HTE model is presented. HTE model describes a theoretical analysis that is suitable for studying community’s MGs. Appropriately concatenating one well-validated technical module and one new economic module, the HTE model quickly and conveniently reveals the power generation/consumption and economic profile of community’s MGs. Second, HTE model is integrated through an extended portfolio of power and financial metrics. The applied metrics study the influence of generation and consumption power changes on community’s MGs. The validity and the efficiency of the HTE model are examined with respect to these power changes while the impact of these changes on the power and cash flows of community’s MGs are assessed. Third, a cost-benefit analysis of the operation of community’s MGs accompanied with a financial stability analysis is also demonstrated. The main outcome of these analyses is the daily total benefit (TB) of community’s MGs with its respective financial bounds. Fourth, the contribution of the energy arbitrage and the power production mix among available power sources of community’s MGs to the daily TB is investigated.Apart from promoting the ecological awareness, this paper tries to become a catching argument for the communities in order to exploit the community’s MGs.Citation: Lazaropoulos, A. G., and Lazaropoulos, P. (2015). Financially Stimulating Local Economies by Exploiting Communities’ Microgrids: Power Trading and Hybrid Techno-Economic (HTE) Model. Trends in Renewable Energy, 1(3), 131-184. DOI: 10.17737/tre.2015.1.3.001

    Special Cases during the Detection of the Hook Style Energy Theft in Overhead Low-Voltage Power Grids through HS-DET Method – Part 1: High Measurement Differences, Very Long Hook Technique and “Smart†Hooks

    Get PDF
    On the basis of [1], this pair of companion papers investigates the possibility of jamming the method of the detection of the hook style energy theft (HS-DET method) that can be used for the detection of the hook style energy theft in the overhead low-voltage (OV LV) power grids. The three main suspicious issues that have been identified in [1] are further investigated in this paper. The robustness of the HS-DET method against these issues is assessed by using percent error sum (PES) submetrics, appropriate contour plots and a new proposed robustness PES submetric against the hook style energy theft of HS-DET method.Citation: Lazaropoulos, A. G. (2019). Special Cases during the Detection of the Hook Style Energy Theft in Overhead Low-Voltage Power Grids through HS-DET Method – Part 1: High Measurement Differences, Very Long Hook Technique and “Smart†Hooks. Trends in Renewable Energy, 5, 60-89. DOI: 10.17737/tre.2019.5.1.008

    Measurement Differences, Faults and Instabilities in Intelligent Energy Systems – Part 2: Fault and Instability Prediction in Overhead High-Voltage Broadband over Power Lines Networks by Applying Fault and Instability Identification Methodology (FIIM)

    Get PDF
    This companion paper of [1] focuses on the prediction of various faults and instabilities that may occur during the operation of the transmission power grid when overhead high-voltage broadband over power lines (OV HV BPL) networks are deployed across it. Having already been identified the theoretical OV HV BPL transfer function for a given OV HV BPL network [1], the faults and instabilities of the transmission power grid are first differentiated from the measurement differences, which can occur during the determination of an OV HV BPL transfer function, and, then, are identified by applying the best L1 Piecewise Monotonic data Approximation (best L1PMA) to the measured OV HV BPL transfer function. When faults and instabilities are detected, a warning is issued.The contribution of this paper is triple. First, the Topology Identification Methodology (TIM) of [1] is here extended to the proposed Fault and Instability Identification Methodology (FIIM) so that faults and instabilities across the transmission power grid can be identified. Also, the curve similarity performance percentage metric (CSPpM) that acts as the accompanying performance metric of FIIM is introduced. Second, the impact of various fault and instability conditions on the OV HV BPL transfer functions is demonstrated. Third, the fault and instability prediction procedure by applying the FIIM is first reported.Citation: Lazaropoulos, A. G. (2016). Measurement Differences, Faults and Instabilities in Intelligent Energy Systems – Part 2: Fault and Instability Prediction in Overhead High-Voltage Broadband over Power Lines Networks by Applying Fault and Instability Identification Methodology (FIIM). Trends in Renewable Energy, 2(3), 113-142. DOI: 10.17737/tre.2016.2.3.002

    Broadband Performance Metrics and Regression Approximations of the New Coupling Schemes for Distribution Broadband over Power Lines (BPL) Networks

    Get PDF
    This paper assesses the broadband performance of overhead (OV) and underground (UN) low-voltage (LV) and medium-voltage (MV) broadband over power lines (BPL) networks when the new refined Coupling Scheme module (CS2 module) is adopted. The broadband performance of distribution BPL networks is assessed in terms of their Average Channel Gain (ACG), Root-Mean-Square Delay-Spread (RMS-DS), Coherence Bandwidth (CB) and Spectral Efficiency (SE). Also, corresponding regression approximations (i.e., UN1, UN2 and UN3 approaches) are given in the examined BPL frequency range. The aforementioned broadband performance metrics of the application of CS2 module are compared against the relative ones of the vintage CS1 module and of MIMO channels. The analysis and relevant numerical results outline: (i) the important improvement of the aforementioned performance metrics and regression approximations when CS2 module is applied in distribution BPL networks instead of CS1 module; and (ii) the universal role of UN1, UN2 and UN3 approaches for describing coupling scheme channels and MIMO ones.Citation: Lazaropoulos, A. G. (2018). Broadband Performance Metrics and Regression Approximations of the New Coupling Schemes for Distribution Broadband over Power Lines (BPL) Networks. Trends in Renewable Energy, 4, 43-73

    Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models (Class Maps) – Part 1: Theory

    Get PDF
    Based on a set of indicative overhead and underground medium voltage broadband over power lines (OV and UN MV BPL) topologies, initial statistical hybrid model (iSHM) and modified statistical hybrid model (mSHM) are statistical channel models suitable for the distribution BPL networks. Both iSHM and mSHM statistically process channel attenuation and capacity values of assumed indicative OV and UN MV BPL topologies by exploiting channel attenuation statistical distributions (CASDs). iSHM exploits a set of well-known CASDs (i.e., Gaussian, Lognormal, Wald, Weibull and Gumbel CASDs) while mSHM exploits the Empirical CASD. Each indicative OV and UN MV BPL topology acts as the representative one of a respective OV and UN MV BPL topology class (i.e., rural, suburban, urban and aggravated urban class) that consists of a number of respective statistically equivalent OV and UN MV BPL topologies. The contribution of this paper is the theoretical framework presentation of the creation of new virtual indicative OV and UN MV BPL topologies by appropriately adjusting the parameters of iSHM and mSHM CASDs. These new virtual indicative OV and UN MV BPL topologies will enrich the respective today’s OV and UN MV BPL topology classes with respective OV and UN MV BPL topology subclasses while each subclass will be enriched by a number of respective statistically equivalent OV and UN MV BPL topologies. The procedure of defining new virtual distribution BPL topologies by applying iSHM and mSHM will allow a better capacity study of OV and UN MV BPL topology classes. Apart from the definition procedure of the virtual indicative OV MV and UN MV BPL topologies and their respective virtual subclasses by adjusting CASD parameters of iSHM and mSHM, the contribution of this paper is the class map that analytically describes the taxonomy of distribution BPL topology classes and subclasses.Citation: Lazaropoulos, A. G. (2019). Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models (Class Maps) – Part 1: Theory. Trends in Renewable Energy, 5, 237-257. DOI: 10.17737/tre.2019.5.3.009

    Capacity Performance of Overhead Transmission Multiple-Input Multiple-Output Broadband over Power Lines Networks: The Insidious Effect of Noise and the Role of Noise Models

    Get PDF
    Extending the analysis already presented in [1], this paper considers broadband potential of overhead (OV) transmission multiple-input multiple-output (MIMO) broadband over power lines (BPL) networks when different noise conditions occur and different well-proven noise models are adopted.The contribution of this paper is two-fold. First, the broadband potential of a great number of indicative OV high-voltage (HV) BPL topologies and of MIMO transmission schemes is studied in terms of appropriate capacity metrics. The relevant numerical results reveal the significant dependence of ΜΙΜΟ capacity metrics on noise conditions. Second, various well-known BPL noise models from the literature are compared on the basis of their achieved OV HV MIMO BPL capacity. Through the careful study of the capacity results of noise models, it is demonstrated that spectrally flat additive white Gaussian noise (AWGN) may be comfortably assumed as an efficient noise model in transmission MIMO BPL networks. Also in MIMO BPL networks, the comparative capacity analysis of noise models shows small differences among them in the 3-88MHz frequency range.Citation:Lazaropoulos, A. G. (2016). Capacity Performance of Overhead Transmission Multiple-Input Multiple-Output Broadband over Power Lines Networks: The Insidious Effect of Noise and the Role of Noise Models. Trends in Renewable Energy, 2(2), 61-82. DOI: 10.17737/tre.2016.2.2.002

    Enhancing the Statistical Hybrid Model Performance in Overhead and Underground Medium Voltage Broadband over Power Lines Channels by Adopting Empirical Channel Attenuation Statistical Distribution

    Get PDF
    Statistical hybrid model is a statistical channel model suitable for the broadband over power lines (BPL) networks while it is based on the statistical processing of channel attenuation and capacity values of preassumed BPL topology classes. One of the key operation elements of the statistical hybrid model, which affects its results fidelity, is the selection of the appropriate channel attenuation statistical distribution among a set of well-known channel attenuation statistical distributions (i.e., such as Gaussian, Lognormal, Wald, Weibull and Gumbel distributions). The selection of the appropriate channel attenuation statistical distribution becomes a hard task since it depends on a number of factors such as the power grid type –either overhead (OV) or underground (UN) power grid–, the representative distribution BPL topology of the examined class, the applied electromagnetic interference (EMI) policies and the used coupling scheme type. The contribution of this paper is to identify the conditions whether the Empirical channel attenuation statistical distribution can act as the default distribution of statistical hybrid model (modified statistical hybrid model) thus replacing the required comparison analysis prior to the selection of the aforementioned distributions of the initial statistical hybrid model. The evaluation comparison is based on the already applied metrics of capacity percentage change and average absolute capacity percentage change.Citation: Lazaropoulos, A. G. (2019). Enhancing the Statistical Hybrid Model Performance in Overhead and Underground Medium Voltage Broadband over Power Lines Channels by Adopting Empirical Channel Attenuation Statistical Distribution. Trends in Renewable Energy, 5, 181-217. DOI: 10.17737/tre.2019.5.2.009

    Management Information Systems and Data Science in the Smart Grid – Inner Class Area Capacity Distribution of the iSHM Class Maps of Overhead Low-Voltage Broadband over Power Lines Topologies

    Get PDF
    On the basis of the initial Statistical Hybrid Model (iSHM), the iSHM class maps, which are 2D contour plots and may graphically classify the real and virtual OV LV BPL topologies into five class areas, are upgraded in this paper by exploiting the third dimension of the capacity so that the upgraded class maps can provide additional information concerning the inner class area capacity distribution. The comprehension of the behavior of the inner class area capacity distribution is critical in order to deeper understand the extent and the position of iSHM class map footprints when various operation conditions of OV LV BPL topologies occur. Two inner class area capacity distribution rule of thumbs that deal with the OV LV BPL topology classification and capacity estimation are proposed thus supporting the management information system of OV LV BPL networks.Citation: Lazaropoulos, A. G. (2020). Management Information Systems and Data Science in the Smart Grid – Inner Class Area Capacity Distribution of the iSHM Class Maps of Overhead Low-Voltage Broadband over Power Lines Topologies. Trends in Renewable Energy, 6(3), 245-265. DOI: 10.17737/tre.2020.6.3.0012

    Smart Energy and Spectral Efficiency (SE) of Distribution Broadband over Power Lines (BPL) Networks – Part 2: L1PMA, L2WPMA and L2CXCV for SE against Measurement Differences in Overhead Medium-Voltage BPL Networks

    Get PDF
    This second paper assesses the performance of piecewise monotonic data approximations, such as L1PMA, L2WPMA and L2CXCV, against the measurement differences during the spectral efficiency (SE) calculations in overhead medium-voltage broadband over power lines (OV MV BPL) networks. In this case study paper, the performance of the aforementioned three already known piecewise monotonic data approximations, which are considered as countermeasure techniques against measurement differences, is here extended during the SE computations. The indicative BPL topologies of the first paper are again considered while the 3-30 MHz frequency band of the BPL operation is assumed.Citation: Lazaropoulos, A. G. (2018). Smart Energy and Spectral Efficiency (SE) of Distribution Broadband over Power Lines (BPL) Networks – Part 2: L1PMA, L2WPMA and L2CXCV for SE against Measurement Differences in Overhead Medium-Voltage BPL Networks. Trends in Renewable Energy, 4, 185-212. DOI: 10.17737/tre.2018.4.2.007

    Measurement Differences, Faults and Instabilities in Intelligent Energy Systems – Part 1: Identification of Overhead High-Voltage Broadband over Power Lines Network Topologies by Applying Topology Identification Methodology (TIM)

    Get PDF
    This first paper considers the identification of the structure of overhead high-voltage broadband over power lines (OV HV BPL) network topologies by applying the best L1 Piecewise Monotonic data Approximation (best L1PMA) to measured OV HV BPL transfer functions. Even if measurement differences occur during the determination of an OV HV BPL transfer function, the corresponding OV HV BPL network topology may be revealed through the curve similarity of the best L1PMA result compared with the available records of the proposed OV HV BPL transfer function database.The contribution of this paper is triple. First, based on the inherent piecewise monotonicity of OV HV BPL transfer functions, best L1PMA is first applied during the determination of theoretical and measured OV HV BPL transfer functions. Second, the creation procedure of the OV HV BPL network topology database is demonstrated as well as the curve similarity performance metric (CSPM). Third, the accuracy of the proposed Topology Identification Methodology (TIM) is examined in comparison with the traditional TIM with respect to the nature of the measurement differences during the determination of OV HV BPL transfer functions.Citation: Lazaropoulos, A. G. (2016). Measurement Differences, Faults and Instabilities in Intelligent Energy Systems – Part 1: Identification of Overhead High-Voltage Broadband over Power Lines Network Topologies by Applying Topology Identification Methodology (TIM). Trends in Renewable Energy, 2(3), 85-112. DOI: 10.17737/tre.2016.2.3.002
    corecore